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Issues

The Boston Planning and Redevelopment Authority (BPDA) collects and analyses economic data in areas
such as employment, housing, travel, and real estate development. This dataset includes data such as
the number of domestic and international passengers at Logan Airport, the total number of international
flights at the same airport, hotel occupancy rates in Boston, the city’s average daily hotel rate, the city’s
unemployment rate, labour rates, and more.

Is there a long-term trend in the number of international flights at Logan International Airport?
What is the annual growth rate of international flights at Logan International Airport?

Are their seasonal patterns or specific months with consistently higher or lower international flight
numbers?

Which months typically experience the highest and lowest numbers of international flights?

How does the number of international flights correlate with other economic indicators in the dataset?
Can we predict the future number of international flights based on historical data?

Are there periods of consistent increase or decrease in unemployment?

How do holidays or specific times of the year affect unemployment?

Findings

The number of international flights at Logan International Airport has been trending upward over the
studied period, according to our analysis. Data point to a possible growth trajectory, with a slow
increase in the number of international flights.

One important metric, the annual growth rate, was estimated to be around 4.90% . This percentage
represents the average annual growth in international travel, giving our findings a strong statistical
basis.

We consistently see higher international flight activity in July and August during the summer, which
suggests a peak travel season. On the other hand, we observe a decline in international flight numbers
in February and November.

An increase in international travel usually corresponds to a decrease in unemployment. As a result,
there appears to be a link between increased international travel and increased job opportunities.
Similarly, we have found that an increase in international flights corresponds to an increase in the
number of people working in the region. The two appear to be inseparable. These are some pretty
compelling trends indicating that the airport’s foreign operations may be having a positive impact on
the local labour market and workforce participation.

It seems that we can predict the number of international flights in the future with some degree of
accuracy based on historical data analysis. It's important to approach these projections cautiously
even though our model’s accuracy in forecasting future numbers of international flights based on
historical data is encouraging. Flight patterns can be influenced by outside variables, unanticipated
events, or market shifts. In order to ensure a comprehensive and flexible approach to our operations,
even though the model offers insightful information, it is best to use these predictions as one of many
considerations when making decisions.

The data on unemployment rates show a clear seasonal pattern. In particular, June has a higher
unemployment rate, whereas December has a lower rate. Despite the fact that the statistical test
indicates that the difference is not statistically significant due to the limited number of data points, the



visual interpretation suggests a consistent seasonal trend. While the statistical test may not iden-
tify these fluctuations as significant, the observed pattern may have important implications for our
understanding of unemployment dynamics throughout the year.

e The holiday seasons, which fall in the same months as winter and summer, are marked by a dis-
cernible spike in unemployment. This pattern raises the possibility that seasonal variations and
holiday-related periods of the year may be linked to greater unemployment rates. Understanding
the seasonal variations in unemployment and the dynamics of the economy at different times of the
year can be greatly aided by the knowledge of this data.

Discussion

Autocorrelation(25% in our case) in residuals can indicate that there are underlying patterns in the
data that have not been fully captured or that the model may require additional refining. To guarantee
the validity and precision of the model’s predictions, autocorrelation must be taken into consideration.

Mean Absolute Error was the primary performance evaluation metric (MAE). Predictive accuracy was
highest for the AR model, which had the lowest MAE of 147.32. However, the decision-making process
extended beyond MAE. Interpretability, complexity, and robustness of the model were considered, rec-
ognizing that selecting a model requires considerable consideration.

As compared to both ARIMA and MA models, the AR model performed better in forecasting inter-
national flights. This implies that a greater role was played by the autoregressive component in iden-
tifying the underlying patterns in the dataset, which takes into account the link between recent and
historical observations.

AR models assume that future results will only depend on past values. When working with com-
plicated datasets affected by multiple factors beyond historical trends, care should be used. Further-
more, the necessity of careful data exploration and preprocessing is highlighted by the susceptibility
of AR models to noise and outliers.

The ttest_ind (T-test for the means of two independent samples of scores) relies heavily on the mag-
nitude so it is not infallible while dealing with something like the unemployment rate

The ADF test, which revealed non-stationarity in the international flights time series data, was the
primary factor in the decision to perform a second differencing even though the KPSS test indicated
stationarity following the first one. Because of the ADF test’s reputation for being sensitive to trend
stationarity, caution was exercised to guarantee a more trustworthy confirmation of stationarity. By
addressing any lingering trend components and meeting the objectives of both tests, this second dif-
ferencing attempted to strengthen the basis for next time series analysis and forecasting.

This method seeks to minimise over-manipulation that could introduce noise while still appropriately
altering the data for effective modelling. Because different tests have different sensitivity to stationar-
ity, it makes sure the data is ready for the next steps of the study.



Appendix A: Method

A comma-separated (.csv) file containing a dataset of economic indicators (tracked monthly between Jan-
uary 2013 and December 2019) was downloaded from "Analyse Boston”.

A DataFrame df containing information on economic indicators, such as the Year, Month, number of passen-
gers arriving and departing from Logan Airport (logan_intl_flights), and other pertinent metrics. A datetime
index is added by manipulating the DataFrame.

The number of lag observations taken into account for modelling trends is indicated by the range of possible
AutoRegressive (AR) orders, or p_values_ar..

best aic_ar is a variable that keeps track of the lowest value of the Akaike Information Criterion (AIC), a
metric used to pick models, during the AR order grid search.

best_order_ar is the ideal AR order that impacts the ARIMA model’s lagged observation selection, ascer-
tained by minimizing the AIC during grid search.

g-values_ma is a range of possible Moving Average (MA) orders that indicate how many forecast mistakes
with lag are taken into account while simulating short-term changes.

best_aic_.ma: A variable that keeps track of the lowest AIC value found during the MA order grid search,
helping the ARIMA model choose the best lagged forecast errors.

best_order_ma: The ideal MA order found by reducing the AIC during grid search, which affects the ARIMA
model’s selection of lag-related forecast errors.

The ARIMA model’'s building blocks are the SARIMAX models for the AR and MA components, respec-
tively, denoted as model_ar and model_ma.

results_ar, results_ma: The information on model parameters and statistical metrics obtained from fitting
SARIMAX models to the time series data.

best_model_ar, best_ model_-ma: SARIMAX models fitted, according to grid search results, with the best
AR and MA orders, respectively.

best_results_ar, best_results_ma: The information stored for forecasting and evaluation after fitting the best
AR and MA models.

The best AR and MA models are used to anticipate and predict the means of international flights, which are
then visualized as best_forecast_ar, best_forecast_-mean_ar, best_forecast_ma, and best_forecast_.mean_ma.

The ARIMA model’s forecasts and projected means on the test data, which integrate the AR and MA com-
ponents, are called arima_forecast_test and arima_forecast_mean_test.

residuals_ar, residuals_ma: Used in residual analysis, these residuals show the variations between ac-
tual and predicted values for the AR and MA models.

lags_ar: The maximum lag taken into account in the residuals of the AR model’s Ljung-Box test for au-
tocorrelations.

test_results_ar: The autocorrelations in the residuals of the AR model after the Ljung-Box test.

p-values_ar: P-values that show the significance of autocorrelations at various lags that were taken from



the Ljung-Box test findings.
The proportion of significant autocorrelations in the AR model residuals is expressed as percentage_autocorrelations_ar.

mae_arima: Mean Absolute Error (MAE) computed to assess how well the ARIMA model performs us-
ing the test set of data.

By using a Moving Average (MA) model, short-term fluctuations were explained and random walk behav-
iors were better understood. Moreover, underlying patterns were revealed through the disentanglement of
trends, seasonality, and residuals made possible by the Seasonal-Trend decomposition using the LOESS
(STL) approach.

The relationships between foreign flights and economic indicators were examined through correlation anal-
yses, which provided insight into possible influencing factors.

T-tests for hypothesis testing examined changes in the unemployment rate over time, revealing statisti-
cally significant variations. By using ARIMA models for Time Series Forecasting, we were able to provide
predictive insights by looking into the future. Forecasting accuracy was measured using evaluation metrics
like Mean Squared Error (MSE) and Root Mean Squared Error (RMSE).

Appendix C has relevant Python code.



Appendix B: Results

The number of international flights at Logan International Airport is increasing over time, as evidenced by
the positive annual growth rate. The growth rate is approximately 4.90
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Figure 1: International Flight at Logan international airport with moving average
The Seasonal Breakdown of International Flights at Logan International Airport is shown below.
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Figure 2: International Flight at Logan international airport with moving average

Patterns were discovered, with July and August consistently having higher international flight numbers,
while February and November had lower numbers. We calculated the mean by aggregating seasonal values



by month after STL decomposition. The plot of monthly mean values is shown below.
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Figure 3: Average Seasonal Effect by Month

As can be seen, the number of international flights is usually highest in July and August and lowest in
February and November.

The number of international flights correlates negatively with the unemployment rate and positively
with the labor force participation rate with a Pearson correlation coefficient of -0.6239526755612207 and
0.7185056582429975 respectively.

The plot below depicts the time series data of the unemployment rate and the monthly average of
unemployment rates after calculating the average unemployment rate for each month.



Unemployment Rate Over Time
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Figure 4: Unemployment rate over time
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Figure 5: Monthly Average Unemployment Rate

The visualisations of second-order differenced data for Logan International flights and autocorrelation
functions were created to aid in the selection of appropriate parameters for an ARIMA model, which is a
critical step in time series forecasting.



Second-Order Differenced Logan Intl Flights
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Figure 6: Second Order Differenced Logan International Flight

A grid search is used to find the best parameters for an ARIMA model’s AutoRegressive (AR) and Moving
Average (MA) components. The script iterates through all possible AR and MA orders, fitting SARIMAX
models and calculating AIC scores. The best AR and MA component orders are determined by the lowest
AIC values. After fitting the chosen AR and MA models to the differenced data, their forecasts are plotted
alongside the original differenced time series for visual comparison.
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Figure 7: Best AR and MA models Forecasting

The code then implements a train-test split on time series data, using 90% of the data for training and
10% for testing. The training data is then fitted with the best-fitting AR and MA models from the previous



grid search. Forecasts are generated for the test set, and the Mean Absolute Error (MAE) is calculated to
assess prediction accuracy. The code visualises the models’ performance by plotting the original training
and testing data as well as the forecasted values. Both the AR and MA models have their own visualisations.
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The parameters for an ARIMA model are then formed by combining the best orders for the AutoRegres-
sive (AR) and Moving Average (MA) components. The ARIMA model is then fitted to the training data, and
forecasts for the test set are generated. The ARIMA model’s predictions on the test data are evaluated
using the Mean Absolute Error (MAE). The obtained MAE for the ARIMA Model is 175.8160293501777.



ARIMA Model Forecasting and Evaluation
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Figure 9: Arima Model Forecasting and Evaluation

The AutoRegressive (AR) and Moving Average (MA) models were then subjected to residual analysis.
On the test data, residuals, or the differences between actual and forecasted values, are computed for each
model. The residuals are then plotted over time, allowing for visual inspection of any patterns or trends.
For unbiased residuals, the horizontal dashed line at zero serves as a reference. This analysis provides
insights into the AR and MA models’ performance and potential areas for improvement.
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Figure 10: Residuals Over Time

The AutoRegressive (AR) model’s residuals are then subjected to the Ljung-Box test. The test de-
termines if the residuals at different lags show statistically significant autocorrelations. The test’s p-values,
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which show the likelihood of finding the specified residuals assuming no autocorrelation, are reported. Next,
using a predetermined significance threshold, the algorithm determines the proportion of autocorrelations
that are statistically significant. Lastly, a thorough examination of the autocorrelations in the residuals of the
AR model is provided by printing each lag’s individual p-values together with their significance level.

With p-values of 0.0353 and 0.0400, respectively, the Ljung-Box test results for the residuals of the Au-
toRegressive (AR) model show that the autocorrelations at lags 5 and 6 are statistically significant. This
implies that the residuals at these delays exhibit a significant pattern or association. The autocorrelations
at the remaining lagst, 2, 3, 4, 7, and 8 show that they are not statistically significant, though, since the
p-values for these lags are higher than the significance level of 0.05. It is determined that 25% of the resid-
ual autocorrelations are significant overall. According to the interpretation, autocorrelation is present in the
residuals of the AR model, however it is most noticeable at lags 5 and 6.

~

values for Ljung-Box Test (AR): 1 0.171994
0.116802

.105995

.135048

.035253

.039975

.059187

8 .077761

Name: 1b_pvalue, dtype: float64

Percentage of Autocorrelations in Residuals (AR): 25.00%

Lag 1: p-value = 0.1720, Not Significant

P_
2
3
4
5
6
7

[~ I~ I~

Lag 2: p-value = 0.1168, Not Significant
Lag 3: p-value = 0.1060, Not Significant
Lag 4: p-value = 0.1350, Not Significant
Lag 5: p-value = 0.0353, Significant

Lag 6: p-value = 0.0400, Significant

Lag 7: p-value = 0.0592, Not Significant
Lag 8: p-value = 0.0778, Not Significant
Total significant autocorrelations: 2
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Appendix C: Code

[1]: dimport pandas as pd (o]
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv('economic-indicators.csv')

df['Date'] = pd.to_datetime(df[['Year', 'Month']].assign(DAY=1))
df.set_index('Date', inplace=True)

plt.figure(figsize=(12, 6))

sns.lineplot(x="'Year', y='logan_int1_flights', data=df)
plt.title('International Flights at Logan International Airport Over Time')
plt.xlabel('Year")

plt.ylabel('Number of International Flights')

plt.grid(True)

plt.show()

#Moving Average (Window 12)
window_size = 12
df['MA'] = df['logan_int1l_flights'].rolling(window=window_size).mean()

plt.figure(figsize=(12, 6))

sns.lineplot(x="'Year', y='logan_intl_flights', data=df, label='Original')
sns.lineplot(x="'Year', y='MA', data=df, label=f'Moving Average (Window {window_size})"
plt.title('International Flights at Logan International Airport with Moving Average')
plt.xlabel('Year')

plt.ylabel('Number of International Flights')

plt.legend()

plt.grid(True)

plt.show()

#STL Decomposition
from statsmodels.tsa.seasonal import STL

# Perform STL decomposition

seasonal_period = 13 # Assuming seasonality of 12 months
stl = STL(df['logan_int1l_flights'], seasonal=seasonal_period)
result = stl.fit()

# Plotting the decomposition components
plt.figure(figsize=(12, 8))

plt.subplot(4, 1, 1)
plt.plot(df.index, result.trend)
plt.title('Trend Component')

plt.subplot(4, 1, 2)
plt.plot(df.index, result.seasonal)
plt.title('Seasonal Component')

plt.subplot(4, 1, 3)
plt.plot(df.index, result.resid)
plt.title('Residual Component')

plt.subplot(4, 1, 4)

plt.plot(df.index, df['logan_intl_flights'], label='Original')

plt.title('Original Time Series')

plt.suptitle('Seasonal Decomposition of International Flights at Logan International Airport')
plt.tight_layout(rect=[0, @, 1, 0.96])

plt.show()

Seasonal Decomposition of International Flights at Logan International Airport

12

0+

+0



# Extracting seasonal component from the STL result
seasonal_component = result.seasonal

# Create a differen dataframe with the seasonal component and the dates
seasonal_df = pd.DataFrame({'Date': result.trend.index, 'Seasonal_Component': seasonal_component.values})
seasonal_df.set_index('Date', inplace=True)

seasonal_df['Month'] = seasonal_df.index.month

# Aggregate seasonal values by month and calculate the mean
monthly_seasonal_mean = seasonal_df.groupby('Month') ['Seasonal_Component'].mean()

plt.figure(figsize=(12, 6))

plt.plot(seasonal_df.index, seasonal_df['Seasonal_Component'], label='Seasonal Component')
plt.title('Seasonal Patterns by Month')

plt.xlabel('Date')

plt.ylabel('Seasonal Component')

plt.legend()

plt.show()

# Monthly mean values plot

plt.figure(figsize=(10, 5))
monthly_seasonal_mean.plot(kind="bar', color='skyblue')
plt.title('Average Seasonal Effect by Month')
plt.xlabel('Month')

plt.ylabel('Average Seasonal Effect')
plt.xticks(rotation=0)

plt.show()

#Annual growth rate

initial_value = df.loc[df.index.min(), 'logan_int1l_flights']
final_value = df.loc[df.index.max(), 'logan_intl_flights']

# number of years
num_years = (df.index.max() - df.index.min()).days / 365.25

annual_growth_rate = (final_value / initial_value) % (1 / num_years) - 1

print(f"Annual Growth Rate: {annual_growth_rate * 100:.2f}%")
Annual Growth Rate: 4.90%

# Correlation(Pearson) between Number of Flights and other relevant economic indicators

correlation = df['logan_int1_flights'].corr(df['labor_force_part_rate'])

correlationl = df['logan_int1_flights'l.corr(df['unemp_rate'])

print(f"Correlation between International Flights and Labor Force Participation Rate: {correlation}")
print(f"Correlation between International Flights and Unemployment Rate: {correlationl}")

Correlation between International Flights and Labor Force Participation Rate: 0.7185056582429975
Correlation between International Flights and Unemployment Rate: -0.6239526755612207

# Unemployment Rate time series
plt.figure(figsize=(12, 6))
plt.plot(df['unemp_rate'])
plt.title('Unemployment Rate Over Time')
plt.xlabel('Date")
plt.ylabel('Unemployment Rate')
plt.show()

# STL decomposition
stl = STL(df['unemp_rate'], seasonal=13) # Assuming a seasonal period of 12 months
result = stl.fit()

# Plot the decomposition components

fig = result.plot()
plt.show()
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# average unemployment rate for each month
monthly_avg_unemp = df.groupby('Month') ['unemp_rate'].mean().sort_values()

# Visualize the monthly average unemployment rates
plt.figure(figsize=(12, 6))

sns.barplot(x=monthly_avg_unemp.index, y=monthly_avg_unemp.values)
plt.title('Monthly Average Unemployment Rate')

plt.xlabel('Month"')

plt.ylabel('Average Unemployment Rate')

plt.show() 9 9

2 # Test for significance. Note that ttest_ind relies heavily on the magnitude so it is not infallible while dealing with something like unemplo
from scipy.stats import ttest_ind

# Extract data for June and December
unemployment_june = df [df.index.month == 6] ['unemp_rate'
unemployment_december = df[df.index.month == 12]['unemp_rate']

# t-test

t_stat, p_value = ttest_ind(unemployment_june, unemployment_december
print('t-test value', t_stat)

print('p value', p_value)

if p_value < 0.05:

print('The difference in unemployment rates between June and December is statistically significant.')
else:

print('There is no significant difference in unemployment rates between June and December.')

t-test value 2.1391280094846437
p value 0.053674458485613565
There is no significant difference in unemployment rates between June and December.

#Model Creation

#AR model

df = pd.read_csv('economic-indicators.csv"')

df['Date'] = pd.to_datetime(df[['Year', 'Month'l].assign(DAY=1))
df.set_index('Date', inplace=True)

df.index.freq = 'MS'

# Apply second-order differencing

df['logan_int1_flights_diff2'] = df['logan_intl_flights'].diff().diff()
print(df)

# Drop NaN values generated by differencing

df = df.dropna()

# Perform Augmented Dickey-Fuller test
result_adfuller = adfuller(df['logan_int1_flights_diff2'])

# Print the results

print("ADF Statistic:", result_adfuller[@])
print("p-value:", result_adfuller[1])
print("Critical Values:", result_adfuller[4])

# Interpret the results
if result_adfuller[l] <= 0.05:
print("Reject the null hypothesis. The series is likely stationary.")
else:
print("Fail to reject the null hypothesis. The series may still be non-stationary.")

# Visualize the differenced time series
plt.figure(figsize=(12, 6))
plt.plot(df['logan_intl_flights_diff2'])
plt.title('Second-Order Differenced Logan Intl Flights')
plt.xlabel('Date')

plt.ylabel('Logan Intl Flights (Differenced)"')
plt.show()
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# Visualize the differenced time series
plt.figure(figsize=(12, 6))
plt.plot(df['logan_intl_flights_diff2'])
plt.title('Second-Order Differenced Logan Intl Flights')
plt.xlabel('Date")

plt.ylabel('Logan Intl Flights (Differenced)')
plt.show()

# ACF and PACF plots to determine model orders
lag_acf = acf(df['logan_intl_flights_diff2'l, nlags=20)
lag_pacf = pacf(df['logan_intl_flights_diff2'], nlags=20, method='ols")

# Plot ACF

plt.figure(figsize=(4, 4))
plot_acf(df['logan_intl_flights_diff2'], lags=20)
plt.title('Autocorrelation Function (ACF) - Differenced')
plt.show()

# Plot PACF

plt.figure(figsize=(4, 4))
plot_pacf(df['logan_intl_flights_diff2'], lags=20)
plt.title('Partial Autocorrelation Function (PACF) - Differenced')
plt.show()

ar_order =1
ar_model = SARIMAX(df['logan_intl_flights_diff2'], order=(ar_order, @, 0))
ar_results = ar_model.fit(disp=False)

# Forecasting on the original data
ar_forecast = ar_results.get_forecast(steps=len(df))
ar_forecast_mean = ar_forecast.predicted_mean

# Plotting AR Model

plt.figure(figsize=(12, 6))

plt.plot(df.index, df['logan_intl_flights_diff2'], label='Differenced Data')
plt.plot(df.index, ar_forecast_mean, label='AR Forecast', linestyle='dashed', color='red"')
plt.title(f'AR({ar_order}) Model Forecasting')

plt.xlabel('Date')

plt.ylabel('Differenced Logan Intl Flights')

plt.legend()

plt.show()

# MA Model

ma_order = 1

ma_model = SARIMAX(df['logan_intl_flights_diff2'], order=(@, @, ma_order))
ma_results = ma_model.fit(disp=False)

# Forecasting on the original data
ma_forecast = ma_results.get_forecast(steps=len(df))
ma_forecast_mean = ma_forecast.predicted_mean

# Plotting MA Model

plt.figure(figsize=(12, 6))

plt.plot(df.index, df['logan_intl_flights_diff2'], label='Differenced Data')
plt.plot(df.index, ma_forecast_mean, label='MA Forecast', linestyle='dashed', color='green')
plt.title(f'MA({ma_order}) Model Forecasting')

plt.xlabel('Date")

plt.ylabel('Differenced Logan Intl Flights')

plt.legend()

plt.show()
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import itertools

# Grid search for AR orders

p_values_ar = range(@, 10) # AR orders
best_aic_ar = float('inf')
best_order_ar = None

for p in p_values_ar:
model_ar = SARIMAX(df['logan_intl_flights_diff2'], order=(p, @, 0))
results_ar = model_ar.fit(disp=False)
aic_ar = results_ar.aic
if aic_ar < best_aic_ar:
best_aic_ar = aic_ar
best_order_ar = (p, 0, 0)

# Grid search for MA orders

q_values_ma = range(@, 10) # MA orders
best_aic_ma = float('inf")
best_order_ma = None

for q in q_values_ma:
model_ma = SARIMAX(df['logan_intl_flights_diff2'l, order=(@, 0, q))
results_ma = model_ma.fit(disp=False)
aic_ma = results_ma.aic
if aic_ma < best_aic_ma:
best_aic_ma = aic_ma
best_order_ma = (0, @, q)

print("best order MA", best_order_ma)

print("best order AR", best_order_ar)

# Fit the best AR and MA models

best_model_ar = SARIMAX(df['logan_int1l_flights_diff2'], order=best_order_ar)
best_results_ar = best_model_ar.fit(disp=False)

best_model_ma = SARIMAX(df['logan_intl_flights_diff2'], order=best_order_ma)
best_results_ma = best_model_ma.fit(disp=False)

# Forecasting on the original data
best_forecast_ar = best_results_ar.get_forecast(steps=len(df))

best_forecast_mean_ar = best_forecast_ar.predicted_mean

best_forecast_ma = best_results_ma.get_forecast(steps=len(df))
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[27]:

from sklearn.model_selection import train_test_split m™» Vv & FP
from sklearn.metrics import mean_absolute_error

# Train-test split (90-10%)

train_size = int(len(df) * 0.9)

train_ar, test_ar = df.ilocl:train_sizel, df.ilocl[train_size:]

train_ma, test_ma = df.ilocl:train_sizel, df.ilocl[train_size:]
end_index_forecast_ar = test_ar.index|[-1]

# Fit the best AR and MA models on the training data

best_model_ar = SARIMAX(train_ar['logan_intl_flights_diff2'], order=best_order_ar)
best_results_ar = best_model_ar.fit(disp=False)

best_model_ma = SARIMAX(train_mal['logan_intl_flights_diff2'], order=best_order_ma)
best_results_ma = best_model_ma.fit(disp=False)

# Forecasting on the test set

forecast_ar = best_results_ar.get_forecast(steps=len(test_ar))
forecast_mean_ar = forecast_ar.predicted_mean
print(train_mal'logan_intl_flights_diff2'])

forecast_ma = best_results_ma.get_forecast(steps=len(test_ma))
forecast_mean_ma = forecast_ma.predicted_mean

# Calculate MAE for evaluation
mae_ar = mean_absolute_error(test_ar['logan_intl_flights_diff2'], forecast_mean_ar)
mae_ma = mean_absolute_error(test_mal'logan_intl_flights_diff2'], forecast_mean_ma)

# Plotting the predictions

plt.figure(figsize=(12, 6))

plt.plot(train_ar.index, train_ar['logan_intl_flights_diff2'], label='Train (AR)')

plt.plot(test_ar.index, test_ar['logan_intl_flights_diff2'], label='Test (AR)')

plt.plot(test_ar.index, forecast_mean_ar, label=f'AR Forecast (MAE: {mae_ar:.2f})', linestyle='dashed', color='blue')

plt.title('AR Model Forecasting and Evaluation')
plt.xlabel('Date")

plt.ylabel('Differenced Logan Intl Flights')
plt.legend()

plt.show()

# Plotting the predictions for MA model

plt.figure(figsize=(12, 6))

plt.plot(train_ma.index, train_mal'logan_intl_flights_diff2'], label='Train (MA)"')

plt.plot(test_ma.index, test_mal'logan_intl_flights_diff2'], label='Test (MA)')

plt.plot(test_ma.index, forecast_mean_ma, label=f'MA Forecast (MAE: {mae_ma:.2f})', linestyle='dashed', color='orange')

plt.title('MA Model Forecasting and Evaluation')
plt.xlabel('Date')

plt.ylabel('Differenced Logan Intl Flights')
plt.legend()

plt.show()

# Combine AR and MA orders for ARIMA model
best_order_arima = (best_order_ar[0], 0, best_order_mal2])

# Fit the best ARIMA model on the training data
best_model_arima_train = SARIMAX(train_ar|['logan_int1_flights_diff2'], order=best_order_arima)
best_results_arima_train = best_model_arima_train.fit(disp=False)

# Forecast on the test data
arima_forecast_test = best_results_arima_train.get_forecast(steps=len(test_ar))
arima_forecast_mean_test = arima_forecast_test.predicted_mean

# Evaluate ARIMA model
mae_arima = mean_absolute_error(test_ar['logan_int1_flights_diff2'], arima_forecast_mean_test)
print(f'MAE for ARIMA Model: {mae_arima}')

# Plotting the predictions for ARIMA model

plt.figure(figsize=(12, 6))

plt.plot(train_ar.index, train_ar['logan_intl_flights_diff2'], label='Train (ARIMA)')

plt.plot(test_ar.index, test_ar['logan_intl_flights_diff2'], label='Test (ARIMA)')

plt.plot(test_ar.index, arima_forecast_mean_test, label=f'ARIMA Forecast (MAE: {mae_arima:.2f})', linestyle='dashed', color='green')

plt.title('ARIMA Model Forecasting and Evaluation')
plt.xlabel('Date"')

plt.ylabel('Differenced Logan Intl Flights')
plt.legend()

plt.show()
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#Residual Analysis

# Residuals for AR model
residuals_ar = test_ar['logan_int1l_flights_diff2'] - forecast_mean_ar

# Residuals for MA model
residuals_ma = test_mal'logan_intl_flights_diff2'] - forecast_mean_ma

# Plot residuals over time

plt.figure(figsize=(12, 6))

plt.plot(test_ar.index, residuals_ar, label='Residuals (AR)', color='blue')
plt.plot(test_ma.index, residuals_ma, label='Residuals (MA)', color='orange')
plt.axhline(@, color='black', linestyle='--', linewidth=1)
plt.title('Residuals Over Time')

plt.xlabel('Date")

plt.ylabel('Residuals"')

plt.legend()

plt.show()

# Plot ACF of residuals with confidence intervals for AR model
plt.figure(figsize=(12, 6))

plot_acf(residuals_ar, lags=3, title='ACF of Residuals (AR)', alpha=0.05)
plt.xlabel('Lags"')

plt.ylabel('Autocorrelation')

plt.show()

# Plot ACF of residuals with confidence intervals for MA model
plt.figure(figsize=(12, 6))

plot_acf(residuals_ma, lags=3, title='ACF of Residuals (MA)', alpha=0.05)
plt.xlabel('Lags"')

plt.ylabel('Autocorrelation')

plt.show()

from scipy import stats

# Histogram and Q-Q Plot of residuals for AR model

plt.figure(figsize=(12, 6))

plt.subplot(1, 2, 1)

plt.hist(residuals_ar, bins=20, color='blue', alpha=0.7, edgecolor='black')
plt.title('Histogram of Residuals (AR)')

plt.xlabel('Residuals")

plt.ylabel('Frequency')

plt.subplot(1, 2, 2)
stats.probplot(residuals_ar, dist='norm', plot=plt)
plt.title('Q-Q Plot of Residuals (AR)')

plt.tight_layout()
plt.show()
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