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Issues:
The Centre for Disease Control and Prevention (CDC) collects health data from state and local
levels to group them together and analyze it, sharing the result back with the state and public to
inform decisions that protect health.

This report used information from two sources: one from the CDC called the Behavioral Risk
Factor Surveillance System (BRFSS), and another from the US Census Bureau's Population
Estimates Program. They used this information to figure out how many people in different
counties have diabetes, how many people were newly diagnosed with diabetes, how many people
are obese, and how many people are not physically active in 2018.

We answer the following questions:

● Which factor (inactivity or obesity) has a stronger impact on the prevalence of diabetes?
● Can the data be used to inform public health policies targeting inactivity or obesity to

reduce diabetes rates?
● Are there counties with unusually high or low diabetes rates given their inactivity and

obesity levels?
● Do these outliers reveal any unique characteristics or interventions that might be

contributing to their status?
● Can we use the inactivity and obesity percentage of counties to predict the diabetes

percentage of a county?
● How accurate is the predictive model, and what are its limitations?
● Are there potential confounding variables that need to be considered?

Findings:
● We found that the level of inactivity has a stronger impact on diabetes compared to

obesity. The data suggests that people being inactive is more closely related to the risk of
diabetes. This conclusion is statistically supported through correlation coefficients and
R-squared scores, indicating a more significant impact of inactivity on diabetes rates in
our dataset.

● While our analysis provides valuable insights into the relationship between
inactivity/obesity and diabetes, the intricacy of health as a factor demands a considerably
broader and more nuanced understanding. Further investigations that consider genetic,
socio-economic, and healthcare access factors are crucial towards developing targeted
and effective public health policies. This comprehensive approach would work towards
ensuring that interventions are not only evidence-based but also inclusive, addressing the
broad variety of health determinants within our population.



● We identified approximately 12.4% of the total counties with higher-than-expected
diabetes rates and 12.7% with lower-than-expected rates compared to predictions based
on inactivity and obesity data. Further investigation, incorporating both quantitative and
qualitative insights, is essential to identify the specific characteristics or interventions
contributing to these deviations. This approach will inform targeted strategies for
improving diabetes outcomes in these counties. Further investigation and collaboration
with local stakeholders and health authorities is required to gain a more detailed
understanding of the specific factors influencing diabetes in these outlier counties.

● Our analysis suggests that there is a relationship between inactivity and obesity
percentages in counties and the diabetes percentage. The coefficients from the regression
model indicate the direction and strength of this relationship. Inactivity and obesity
percentages appear to be associated with deviations in the diabetes percentage.
It seems that predicting diabetes percentages based on inactivity and obesity percentages
is possible. Our analysis revealed a connection between these factors.
How accurate is the predictive model?

● The model may be described as moderately accurate, explaining around 35% of the
variation in diabetes rates in the counties using inactivity and obesity. The implication
being that there are additional factors influencing diabetes rates that the model doesn't
capture owing to .

● The model's accuracy is influenced by factors like the data not perfectly following a
pattern (heteroskedasticity) and the residuals (the differences between predicted and
actual values) not adhering perfectly to a normal distribution. These nuances in the data
make predicting diabetes rates with absolute precision considerably challenging. Health
outcomes are complex and influenced by numerous factors, and our model provides
insights but acknowledges the inherent complexity of the issue.

Limitations:

● Simplification: The model oversimplifies the relationship between inactivity, obesity,
and diabetes, potentially missing important nuances in real-world dynamics.

● Generalization: Its applicability to different populations or regions may be limited, as it's
specifically trained on data from USA counties.

● Limited Features: The exclusion of factors like genetics, diet, and healthcare access may
lead to an incomplete understanding of the major factors responsible for changes in
diabetes rates.

● Residual Distribution: The assumption of normally distributed residuals is violated,
casting doubt on the reliability of statistical inferences and predictions.



● Causation: While our model can reliably identify associations, it fails at establishing
causation, limiting the ability to make conclusive statements about the impact of lifestyle
factors on diabetes.

Discussion:
● The positive coefficients for inactivity and obesity suggest a positive association with

diabetes rates. This successfully aligns with existing literature indicating a connection
between sedentary behavior, obesity, and the prevalence of diabetes.

● The r-squared values indicate that your model explains a moderate portion of the
variability in diabetes rates. This suggests that other factors beyond inactivity and obesity
contribute to diabetes rates. Consider exploring and incorporating additional variables to
improve the model's explanatory power.

● The presence of heteroskedasticity in the initial model suggests that the variability of the
errors is not constant across all levels of the independent variables. The log
transformation of diabetes and sqrt transformation of obesity seems to have addressed
this issue to a certain extent.

● The positive associations between inactivity, obesity, and diabetes rates suggest that
specific interventions targeting these lifestyle factors could potentially contribute to
reducing diabetes rates. Public health policies promoting physical activity and healthy
weight management could prove to be beneficial.

● The findings indicate room for further investigation. Consider exploring interactions
between variables, incorporating more features, and examining the impact of potential
outliers or influential data points. Like collaboration with local stakeholders and health
authorities to gain a more detailed understanding of the specific factors influencing
diabetes rates in these outlier counties.

● The accuracy of the predictive model can be described using a metric called (R-squared).
It gives us a sense of how well the model explains the variability in diabetes rates based
on inactivity and obesity. In our analysis, before transformation The R-squared value was
around 0.35 for the training set and 0.27 for the test set. This suggests that the model
explains about 35% of the variability in diabetes rates in the training set and 27% in the
test set.

● The counties identified with higher-than-expected diabetes rates compared to predictions
based on inactivity and obesity levels would require a comprehensive investigation to
uncover unique characteristics or interventions contributing to their status. This analysis
would involve reviewing existing literature and public health reports for each state,
examining demographic and socioeconomic factors, evaluating healthcare infrastructure,
considering cultural and lifestyle influences, and investigating public health interventions
and policies targeting physical activity and diabetes prevention.



Appendix A: Method

Data Collection: Data on diagnosed diabetes, new cases, obesity, and inactivity at the county
level were collected through a survey of adults aged 18 or older during the year 2018.
Self-reports determined diabetes status, new cases, obesity (BMI ≥30), and physical inactivity.

Variable collection: The three variables in the data are “Inactivity Percentage”, “Obesity
Percentage” and “Diabetes Percentage”. The dataset included county-level data for these
variables, along with FIPS codes as identifiers. The process involved merging three separate
tables based on FIPS codes to create a consolidated dataset with common data points.
Analytic methods:

Data Merging: Was performed by merging three tables (inactivity percentage, obesity
percentage, and diabetes percentage) using a common identifier (FIPS).
This step provided access to a consolidated dataset with relevant information from all three
tables.

Descriptive Statistics: Involved the calculation of a 5-point summary (minimum, 25th
percentile, median, 75th percentile, and maximum) for inactivity, obesity, and diabetes
percentages.
Created three separate histogram plots to visualize the distribution of each variable.
Identified that inactivity is a little left-skewed, obesity is more left-skewed, and diabetes is
right-skewed.

Data Splitting: You split the data into training and testing sets (80% training, 20% testing) to
evaluate your model's performance on unseen data.
Used random_state to ensure reproducibility.

Linear Regression Modeling:
Applied multiple linear regression with inactivity and obesity (X) as predictors and diabetes
percentage (y) as the target variable. Obtained coefficients for the intercept, inactivity, and
obesity. Fitted the model on the training set and evaluated its performance on both training and
testing sets using R-squared values.

Residual Analysis: Calculated residuals for the training set. Conducted the Breusch-Pagan test
to check for heteroskedasticity, which indicated evidence of heteroskedasticity with a p-value.

Cross-Validation: Applied 5-fold cross-validation to assess the model's generalizability.



Obtained an array of R2 values for each fold. Calculated the range, standard deviation, and
interquartile range of the cross-validated R2 values.

Transformation to Address Heteroskedasticity: Applied log transformation to the diabetes
data and square root transformation to the obesity data to address heteroskedasticity. Obtained
new coefficients for the transformed model. Fitted the transformed model on the training set and
evaluated its performance on the testing set.

Residual Analysis Post-Transformation: Calculated residuals for the training set
post-transformation. Conducted the Breusch-Pagan test again, finding no evidence of
heteroskedasticity (p-value: 0.23).

Cross-Validation Post-Transformation: Applied 5-fold cross-validation on the transformed
model and assessed the range, standard deviation, and interquartile range of the cross-validated
R2 values.



Appendix B: Results

The descriptive statistics reveal key characteristics of the data. Inactivity percentages displayed a
left-skewed distribution (skewness: -0.342). Obesity percentages exhibited substantial skewness
and kurtosis (skewness: -2.685, kurtosis: 12.322), while diabetes percentages were right-skewed
(skewness: 0.974) and moderately kurtotic (kurtosis: 1.032).

Figures such as histograms were used to visually convey these distributions.



Moving to the linear regression model, the initial model provided coefficients for inactivity (B1:
0.238) and obesity (B2: 0.102), indicating their impact on diabetes percentages.

The R-squared values were 0.3465 for the training set and 0.2657 for the testing set.
The Breusch-Pagan test suggested heteroskedasticity (P-value = 0.0118).

Cross-validation with a 5-fold approach yielded an R-squared range of 0.2924, standard
deviation of 0.0940, and interquartile range of 0.0528.

To address heteroskedasticity, log-transformations on diabetes and square root-transformations
on obesity were applied. The transformed model exhibited improved R-squared values (training:
0.3665, testing: 0.262) and showed no evidence of heteroskedasticity (Breusch-Pagan P-value =
0.2300).

Histogram plot after the transformations are given below:

Cross-validation results mirrored those of the initial model.



Appendix C: Data and code











Transformation:
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