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Issues:

The Centre for Disease Control and Prevention (CDC) collects health data from state and local
levels to group them together and analyze it, sharing the result back with the state and public to
inform decisions that protect health.

This report used information from two sources: one from the CDC called the Behavioral Risk
Factor Surveillance System (BRFSS), and another from the US Census Bureau's Population
Estimates Program. They used this information to figure out how many people in different
counties have diabetes, how many people were newly diagnosed with diabetes, how many people
are obese, and how many people are not physically active in 2018.

We answer the following questions:

Which factor (inactivity or obesity) has a stronger impact on the prevalence of diabetes?
Can the data be used to inform public health policies targeting inactivity or obesity to
reduce diabetes rates?

® Are there counties with unusually high or low diabetes rates given their inactivity and
obesity levels?

e Do these outliers reveal any unique characteristics or interventions that might be
contributing to their status?

e Can we use the inactivity and obesity percentage of counties to predict the diabetes
percentage of a county?
How accurate is the predictive model, and what are its limitations?
Are there potential confounding variables that need to be considered?

Findings:

e We found that the level of inactivity has a stronger impact on diabetes compared to
obesity. The data suggests that people being inactive is more closely related to the risk of
diabetes. This conclusion is statistically supported through correlation coefficients and
R-squared scores, indicating a more significant impact of inactivity on diabetes rates in
our dataset.

e While our analysis provides valuable insights into the relationship between
inactivity/obesity and diabetes, the intricacy of health as a factor demands a considerably
broader and more nuanced understanding. Further investigations that consider genetic,
socio-economic, and healthcare access factors are crucial towards developing targeted
and effective public health policies. This comprehensive approach would work towards
ensuring that interventions are not only evidence-based but also inclusive, addressing the
broad variety of health determinants within our population.



We identified approximately 12.4% of the total counties with higher-than-expected
diabetes rates and 12.7% with lower-than-expected rates compared to predictions based
on inactivity and obesity data. Further investigation, incorporating both quantitative and
qualitative insights, is essential to identify the specific characteristics or interventions
contributing to these deviations. This approach will inform targeted strategies for
improving diabetes outcomes in these counties. Further investigation and collaboration
with local stakeholders and health authorities is required to gain a more detailed
understanding of the specific factors influencing diabetes in these outlier counties.

Our analysis suggests that there is a relationship between inactivity and obesity
percentages in counties and the diabetes percentage. The coefficients from the regression
model indicate the direction and strength of this relationship. Inactivity and obesity
percentages appear to be associated with deviations in the diabetes percentage.

It seems that predicting diabetes percentages based on inactivity and obesity percentages
is possible. Our analysis revealed a connection between these factors.

How accurate is the predictive model?

The model may be described as moderately accurate, explaining around 35% of the
variation in diabetes rates in the counties using inactivity and obesity. The implication
being that there are additional factors influencing diabetes rates that the model doesn't
capture owing to .

The model's accuracy is influenced by factors like the data not perfectly following a
pattern (heteroskedasticity) and the residuals (the differences between predicted and
actual values) not adhering perfectly to a normal distribution. These nuances in the data
make predicting diabetes rates with absolute precision considerably challenging. Health
outcomes are complex and influenced by numerous factors, and our model provides
insights but acknowledges the inherent complexity of the issue.

Limitations:

Simplification: The model oversimplifies the relationship between inactivity, obesity,
and diabetes, potentially missing important nuances in real-world dynamics.
Generalization: Its applicability to different populations or regions may be limited, as it's
specifically trained on data from USA counties.

Limited Features: The exclusion of factors like genetics, diet, and healthcare access may
lead to an incomplete understanding of the major factors responsible for changes in
diabetes rates.

Residual Distribution: The assumption of normally distributed residuals is violated,
casting doubt on the reliability of statistical inferences and predictions.



Causation: While our model can reliably identify associations, it fails at establishing
causation, limiting the ability to make conclusive statements about the impact of lifestyle
factors on diabetes.

Discussion:

The positive coefficients for inactivity and obesity suggest a positive association with
diabetes rates. This successfully aligns with existing literature indicating a connection
between sedentary behavior, obesity, and the prevalence of diabetes.

The r-squared values indicate that your model explains a moderate portion of the
variability in diabetes rates. This suggests that other factors beyond inactivity and obesity
contribute to diabetes rates. Consider exploring and incorporating additional variables to
improve the model's explanatory power.

The presence of heteroskedasticity in the initial model suggests that the variability of the
errors is not constant across all levels of the independent variables. The log
transformation of diabetes and sqrt transformation of obesity seems to have addressed
this issue to a certain extent.

The positive associations between inactivity, obesity, and diabetes rates suggest that
specific interventions targeting these lifestyle factors could potentially contribute to
reducing diabetes rates. Public health policies promoting physical activity and healthy
weight management could prove to be beneficial.

The findings indicate room for further investigation. Consider exploring interactions
between variables, incorporating more features, and examining the impact of potential
outliers or influential data points. Like collaboration with local stakeholders and health
authorities to gain a more detailed understanding of the specific factors influencing
diabetes rates in these outlier counties.

The accuracy of the predictive model can be described using a metric called (R-squared).
It gives us a sense of how well the model explains the variability in diabetes rates based
on inactivity and obesity. In our analysis, before transformation The R-squared value was
around 0.35 for the training set and 0.27 for the test set. This suggests that the model
explains about 35% of the variability in diabetes rates in the training set and 27% in the
test set.

The counties identified with higher-than-expected diabetes rates compared to predictions
based on inactivity and obesity levels would require a comprehensive investigation to
uncover unique characteristics or interventions contributing to their status. This analysis
would involve reviewing existing literature and public health reports for each state,
examining demographic and socioeconomic factors, evaluating healthcare infrastructure,
considering cultural and lifestyle influences, and investigating public health interventions
and policies targeting physical activity and diabetes prevention.



Appendix A: Method

Data Collection: Data on diagnosed diabetes, new cases, obesity, and inactivity at the county
level were collected through a survey of adults aged 18 or older during the year 2018.
Self-reports determined diabetes status, new cases, obesity (BMI >30), and physical inactivity.

Variable collection: The three variables in the data are “Inactivity Percentage”, “Obesity
Percentage” and “Diabetes Percentage”. The dataset included county-level data for these
variables, along with FIPS codes as identifiers. The process involved merging three separate
tables based on FIPS codes to create a consolidated dataset with common data points.

Analytic methods:

Data Merging: Was performed by merging three tables (inactivity percentage, obesity
percentage, and diabetes percentage) using a common identifier (FIPS).

This step provided access to a consolidated dataset with relevant information from all three
tables.

Descriptive Statistics: Involved the calculation of a 5-point summary (minimum, 25th
percentile, median, 75th percentile, and maximum) for inactivity, obesity, and diabetes
percentages.

Created three separate histogram plots to visualize the distribution of each variable.

Identified that inactivity is a little left-skewed, obesity is more left-skewed, and diabetes is
right-skewed.

Data Splitting: You split the data into training and testing sets (80% training, 20% testing) to
evaluate your model's performance on unseen data.
Used random_state to ensure reproducibility.

Linear Regression Modeling:

Applied multiple linear regression with inactivity and obesity (X) as predictors and diabetes
percentage (y) as the target variable. Obtained coefficients for the intercept, inactivity, and
obesity. Fitted the model on the training set and evaluated its performance on both training and
testing sets using R-squared values.

Residual Analysis: Calculated residuals for the training set. Conducted the Breusch-Pagan test
to check for heteroskedasticity, which indicated evidence of heteroskedasticity with a p-value.

Cross-Validation: Applied 5-fold cross-validation to assess the model's generalizability.



Obtained an array of R2 values for each fold. Calculated the range, standard deviation, and
interquartile range of the cross-validated R2 values.

Transformation to Address Heteroskedasticity: Applied log transformation to the diabetes
data and square root transformation to the obesity data to address heteroskedasticity. Obtained
new coefficients for the transformed model. Fitted the transformed model on the training set and
evaluated its performance on the testing set.

Residual Analysis Post-Transformation: Calculated residuals for the training set
post-transformation. Conducted the Breusch-Pagan test again, finding no evidence of
heteroskedasticity (p-value: 0.23).

Cross-Validation Post-Transformation: Applied 5-fold cross-validation on the transformed
model and assessed the range, standard deviation, and interquartile range of the cross-validated
R2 values.



Appendix B: Results

The descriptive statistics reveal key characteristics of the data. Inactivity percentages displayed a
left-skewed distribution (skewness: -0.342). Obesity percentages exhibited substantial skewness
and kurtosis (skewness: -2.685, kurtosis: 12.322), while diabetes percentages were right-skewed
(skewness: 0.974) and moderately kurtotic (kurtosis: 1.032).

First Quartile for inac : 15.0

Median for inac : 16.7

Third Quartile for inac : 18.1

IQR for inac : 3.1000000000000014
Lowerbound for inac 1 10.349999999999998
Upper bound for inac : 19.650000000000002

First Quartile for obes : 17.9
Median for obes : 18.3
Third Quartile for obes : 19.0

IQR for obes : 1.1000000000000014
Lowerbound for obes : 16.249999999999996
Upper bound for obes : 19.55

First Quartile for diab : 7.3
Median for diab : 8.4
Third Quartile for diab : 9.7

IQR for diab 1 2.3999999999999995
Lowerbound for diab : 3.7000000000000006
Upper bound for diab : 10.899999999999999

Figures such as histograms were used to visually convey these distributions.
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Moving to the linear regression model, the initial model provided coefficients for inactivity (B1:
0.238) and obesity (B2: 0.102), indicating their impact on diabetes percentages.

Intercept: 1.7026414354405093
Coefficient for Inactivity (B1l): 0.23778887846349625
Coefficient for Obesity (B2): 0.1024931241432882

The R-squared values were 0.3465 for the training set and 0.2657 for the testing set.
The Breusch-Pagan test suggested heteroskedasticity (P-value = 0.0118).

Breusch—-Pagan Test Results:
P-value: 0.011803102323772647
Heteroskedasticity detected (reject null hypothesis)

Cross-validation with a 5-fold approach yielded an R-squared range of 0.2924, standard
deviation of 0.0940, and interquartile range of 0.0528.

Range of R-squared: ©.2924070839879689
Standard Deviation of R-squared: 0.0940412889655816
Interquartile Range of R-squared: ©.05280956747528154

To address heteroskedasticity, log-transformations on diabetes and square root-transformations
on obesity were applied. The transformed model exhibited improved R-squared values (training:
0.3665, testing: 0.262) and showed no evidence of heteroskedasticity (Breusch-Pagan P-value =
0.2300).

Breusch-Pagan Test Results:
P-value: 0.23002700235252826
No evidence of heteroskedasticity

Histogram plot after the transformations are given below:
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Cross-validation results mirrored those of the initial model.



Appendix C: Data and code

import numpy as np

import matplotlib.pyplot as plt
import pandas as pd

import seaborn as sns

data_inactivity = pd.read_csv('inactivity.csv', usecols=['FIPS', 'S INACTIVE']) #FIPDS
data_obesity = pd.read_csv('obesity.csv', usecols=['FIPS', '% OBESE'])

data_diabetes = pd.read_csv('diabetes.csv', usecols=['FIPS', '% DIABETIC',])

inac_ob = pd.merge(data_inactivity, data_obesity, on='FIPS', how='inner")

dataset = pd.merge(inac_ob, data_diabetes, on='FIPS', how='inner")
dataset

FIPS % INACTIVE % OBESE % DIABETIC

o 1011 17.0 18.7 9.4
1 2068 16.2 18.9 6.8
2 2105 15.0 19.4 7.3
3 2195 17.8 17.2 9.2
4 2230 15.8 18.3 6.6
349 51820 16.6 19.5 8.6
350 51830 15.7 18.0 8.5
351 51840 16.1 19.4 6.9
352 53055 11.9 19.3 45
obes_data = data_obesity.iloc[:, 1].values

diab_data = data_diabetes.iloc[:, 1].values
inac_data = data_inactivity.iloc[:, 1].values
First Quartile for inac : 15.0

Median for inac : 16.7

Third Quartile for inac : 18.1

IQR for inac : 3.1000000000000014
Lowerbound for inac 1 10.349999999999998
Upper bound for inac : 19.650000000000002

First Quartile for obes : 17.9
Median for obes : 18.3
Third Quartile for obes : 19.0

IQR for obes : 1.1000000000000014
Lowerbound for obes 1 16.249999999999996
Upper bound for obes 1 19.55

First Quartile for diab : 7.3

Median for diab : 8.4

Third Quartile for diab : 9.7

IQR for diab 1 2.3999999999999995
Lowerbound for diab : 3.7000000000000006
Upper bound for diab : 10.899999999999999




import numpy as np
from scipy.stats import skew, kurtosis

data = np.random. randn(100)

skewness = skew(inac_data) #inactivity data
kurt = kurtosis(inac_data)

for i in ["inac","obes", "diab"]:
skewness = skew(locals() [f"{i}_data"]) #inactivity data
kurt = kurtosis(locals() [f"{i}_data"])
print("Skewness "+ i , skewness)
print("Kurtosis "+ i , kurt)
print("\n")

Skewness inac -0.34204159975018034
Kurtosis inac -0.5490325254959423

Skewness obes -2.6850558229853996
Kurtosis obes 12.322509149363517

Skewness diab 0.9744494449218979
Kurtosis diab 1.0317351879435321

fig, axes = plt.subplots(3, 1)

sns.histplot(inac_data, bins=20, kde=True, color='blue', ax=axes[0])

axes[0].axvline(median_inac, color='green', linestyle='dashed', linewidth=2, label='Median')

axes [0].axvline(lower_bound_inac, color='red', linestyle='dashed', linewidth=2, label='Lower Bound')
axes[0].axvline(upper_bound_inac, color='orange', linestyle='dashed', linewidth=2, label='Upper Bound')
axes[0].set_title('Inactivity')

axes [0].legend()

sns.histplot(obes_data, bins=20, kde=True, color='green', ax=axes[1])

axes[1].axvline(median_obes, color='purple', linestyle='dashed', linewidth=2, label='Median')
axes[1].axvline(lower_bound_obes, color='red', linestyle='dashed', linewidth=2, label='Lower Bound')
axes[1].axvline(upper_bound_obes, color='orange', linestyle='dashed', linewidth=2, label='Upper Bound')
axes[1].set_title('Obesity"')

axes[1].legend()

sns.histplot(diab_data, bins=20, kde=True, color='purple', ax=axes[2])

axes[2].axvline(median_diab, color='blue', linestyle='dashed', linewidth=2, label='Median')

axes [2].axvline(lower_bound_diab, color='red', linestyle='dashed', linewidth=2, label='Lower Bound')
axes [2].axvline(upper_bound_diab, color='orange', linestyle='dashed', linewidth=2, label='Upper Bound')
axes[2].set_title('Diabetes')

axes [2].legend()

plt.tight_layout()
plt.show()



dataset.iloc[:, 1:-1].values
dataset.iloc[:, -1].values

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)

from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)

iv LinearRegression

%LinearRegression()é

print("Intercept:", regressor.intercept_)
print("Coefficient for Inactivity (B1):", regressor.coef_[0])
print("Coefficient for Obesity (B2):", regressor.coef_[1])

Intercept: 1.7026414354405093
Coefficient for Inactivity (B1): 0.23778887846349625
Coefficient for Obesity (B2): 0.1024931241432882

y_pred_train = regressor.predict(X_train) # prediction for training set

y_pred_test = regressor.predict(X_test)

np.set_printoptions(precision=2)

# print(np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test),1)),1))

import matplotlib.pyplot as plt

plt.scatter(y_train, y_pred_train)

plt.xlabel("Actual Diabetes")

plt.ylabel("Predicted Diabetes percentage")

plt.title("Actual vs Predicted Diabetes Percentage (Training Data)")

Actual vs Predicted Diabetes Percentage (Training Data)
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from sklearn.metrics import r2_score
r2_score(y_train, y_pred_train)

0.3465457795941539




plt.scatter(y_test, y_pred_test) #Testing scatter for testing set|
plt.xlabel("Actual Diabetes")

plt.ylabel("Predicted Diabetes percentage")

plt.title("Actual vs Predicted Diabetes Percentage (Testing Data)")

Text(0.5, 1.0, 'Actual vs Predicted Diabetes Percentage (Testing Data)')

Actual vs Predicted Diabetes Percentage (Testing Data)
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#Residual plot|

residuals_train = y_train - y_pred_train

sns.scatterplot(x=y_train, y=residuals_train)

plt.axhline(y=0, color='r', linestyle='--', label='Zero Residuals Line')
plt.title('Residual Plot (train)')

plt.xlabel('Actual Diabetes Percentage')

plt.ylabel('Residuals")

plt.legend()
plt.show()
Residual Plot (train)
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from sklearn.metrics import mean_squared_error
residuals_train_std = residuals_train / np.sqrt(mean_squared_error(y_train, y_pred_train))




from scipy.stats import zscore

z_scores = zscore(residuals_train)
outliers = (np.abs(z_scores) > 1)

# Count of counties with higher than expected diabetes percentage (given inactivity and obesity)
count_higher = np.sum(residuals_train_std > 1)

count_lower = np.sum(residuals_train_std < -1)
total_count = len(residuals_train_std)

# Proportion of count_higher
proportion_higher = count_higher / total_count

# Proportion of count_lower
proportion_lower = count_lower / total_count

print("Count of counties higher than expected diabetes percentage (given inactivity and obesity):", count_higher)
print("Count of counties lower than expected diabetes percentage (given inactivity and obesity):", count_lower)
print("Total count of counties:", total_count)

print("Proportion of counties higher than expected:", proportion_higher)

print("Proportion of counties lower than expected:", proportion_lower)

Count of counties higher than expected diabetes percentage (given inactivity and obesity): 35
Count of counties lower than expected diabetes percentage (given inactivity and obesity): 36
Total count of counties: 283

Proportion of counties higher than expected: 0.12367491166077739

Proportion of counties lower than expected: 0.127208480565371

plt.figure()

plt.scatter(X_train[:, @], X_train[:, 1], c=residuals_train_std, cmap='coolwarm', alpha=0.8)
plt.colorbar(label='Standardized Residuals')

plt.xlabel('Inactivity"')

plt.ylabel('Obesity")

plt.title('Counties with Unusually High/Low Diabetes Rates')

plt.show()
Counties with Unusually High/Low Diabetes Rates
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squared_residuals = residuals_train**2

from statsmodels.stats.diagnostic import het_breuschpagan
import statsmodels.api as sm

# Add a constant term to X_train for the intercept
X_train_with_constant = sm.add_constant(X_train)

# Perform Breusch-Pagan test
_, p_value, _, _ = sm.stats.diagnostic.het_breuschpagan(squared_residuals, X_train_with_constant)

print("Breusch-Pagan Test Results:")
print(f"P-value: {p_value}")

#Significance value
alpha = 0.05
if p_value < alpha:
print("Heteroskedasticity detected (reject null hypothesis)")
else:
print("No evidence of heteroskedasticity")

Breusch-Pagan Test Results:
P-value: 0.011803102323772647
Heteroskedasticity detected (reject null hypothesis)

from sklearn.model_selection import cross_val_score

# 5 fold cross validation|
cross_val_r2 = cross_val_score(regressor, X_train, y_train, cv=5, scoring='r2")
cross_val_r2

array([0.46, 0.17, 0.28, 0.33, 0.31])

cv_range = np.max(cross_val_r2) - np.min(cross_val_r2)
print("Range of R-squared: ", cv_range)

cv_std = np.std(cross_val_r2)

print("Standard Deviation of R-squared: ", cv_std)
q75, 925 = np.percentile(cross_val_r2, [75 ,25])
cv_iqr = q75 - g25

print("Interquartile Range of R-squared: ", cv_iqr)

Range of R-squared: 0.2924070839879689
Standard Deviation of R-squared: ©.0940412889655816
Interquartile Range of R-squared: 0.05280956747528154

Transformation:

X = dataset.iloc[:, 1:-1].values
X[:, 11 = np.sqrt(X[:, 1])
y = np.log(dataset.iloc[:, -1].values)

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)

from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)

print("Intercept:", regressor.intercept_)
print("Coefficient for Inactivity (B1):", regressor.coef_[0])
print("Coefficient for Obesity (B2):", regressor.coef_[1])

Intercept: 0.686564462589341
Coefficient for Inactivity (B1l): 0.03203370607290505
Coefficient for Obesity (B2): 0.18562871685278498

from sklearn.metrics import r2_score
r2_score(y_train, y_pred_train)

0.36493625545062025



Residual Plot (train)
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import scipy.stats as stats

plt.hist(residuals, bins='auto', color='blue', alpha=0.7, rwidth=0.85)
plt.title('Histogram of Residuals')

plt.show()

# Q-Q plot

stats.probplot(residuals, dist="norm", plot=plt)
plt.title('Q-Q Plot')

plt.show()

Histogram of Residuals

20 4

10 A

0-

residuals

y_train - y_pred_train

sns.scatterplot(x=y_train, y=residuals)

plt.axhline(y=0, color='r', linestyle='—-', label='Zero Residuals Line')
plt.title('Residual Plot (train)')

plt.xlabel('Actual Diabetes Percentage')

plt.ylabel('Residuals"')

plt.legend()

plt.show()




Q-Q Plot

0.2 ®
0.1
0
5 0.0 -
g
3
i —0.1 A
T
O
_02 B
—0.3 1 ]
.’0
®
_0'4 L T T T T T T T
-3 -2 -1 0 1 2 3
Theoretical quantiles
#Check for Normality
from scipy.stats import shapiro
_, p_value = shapiro(residuals)
print("Shapiro-Wilk p-value:", p_value)
if p_value < 0.05:
print("Not normal")
else:
print("Normal")
Shapiro-Wilk p-value: 5.73020131344748e-10
Not normal
from statsmodels.stats.diagnostic import het_breuschpagan
import statsmodels.api as sm
# Add a constant term to X_train for the intercept
X_train_with_constant = sm.add_constant(X_train)
# Perform Breusch-Pagan test
_, p_value, _, _ = sm.stats.diagnostic.het_breuschpagan(squared_residuals, X_train_with_constant)

print("Breusch-Pagan Test Results:")
print(f"P-value: {p_value}")

|
alpha = 0.05
if p_value < alpha:
print("Heteroskedasticity detected (reject null hypothesis)")
else:
print("No evidence of heteroskedasticity")

Breusch-Pagan Test Results:
P-value: 0.23002700235252826
No evidence of heteroskedasticity

Contributions:

All co-authors played an equal part towards the creation of the project.



